Step of Proof: nth_tl_is_fseg
11,40
postcript
pdf
Inference at
*
1
1
1
1
1
I
of proof for Lemma
nth
tl
is
fseg
:
.....falsecase..... NILNIL
1.
T
: Type
2.
L1
:
T
List
3.
T
List
4.
T
5.
v
:
T
List
6.
L1
= nth_tl(||
v
||;
v
@
L1
)
7. 0 < (||
v
||+1)
L1
= nth_tl((||
v
||+1) - 1;
v
@
L1
)
latex
by ((ArithSimp 0)
CollapseTHEN (Auto
))
latex
C
.
Definitions
,
T
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
,
n
+
m
,
#$n
,
nth_tl(
n
;
as
)
,
||
as
||
,
as
@
bs
,
a
<
b
,
type
List
,
Type
,
s
=
t
,
n
-
m
,
True
,
t
T
Lemmas
nth
tl
wf
,
squash
wf
,
true
wf
,
append
wf
origin